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In the present paper an attempt has been made to analyse  a single server 

waiting line system with finite range model, which is a well known life 

testing model.  

 

INTRODUCTION 

In the paper we estimate the parameters involved in a single server 

waiting line system with the service time distribution as a finite r ange 

model namely, Mukheerji -Islam model, which is a well known life testing 

model.   

Consider a single server queuing with infinite capacity having FCFS 

(First Come First Serve) queue discipline. We assume that the arrivals are 

Poisson with arrival rate  .  But the service time distribution of the 

process is a new finite range probability distribution which is introduced 

by Mukherjee-Islam (1983) as a life testing model.  

f(t;   ,p) = (p/
p
) t

p -1
;     p,    > 0; 

              t    0                 ….(1) 

The above model is monotonic decreasing and highly skewed to the 

right.  The graph is J -shaped thereby showing the unimodel feature. The 

distribution function of above model will  be  

F(t) = [t/]
p
                      . . . .(2) 

with     Mean =   

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and Variance = 
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MAXIMUM LIKELIHOOD ESTIMATES  

 

Consider a random sample T 1 ,T2 ,…..Tn  from the population with 

p.d.f. (1).  The likelihood function is given as  

L(t;  ,  p) = p
n


-n p
 ti

p

i

n





1

1

           ….(3) 

Taking log on both the sides, we get  

log L = n log p - np log   + (p-1)  log t i          ….(4) 

Differentiating the equation (4) partially with respect to ‘p’ and 

equating it  to zero,  

 



0itloglogn

p

n

p

)t(Llog
 

The m.l.e. of p is finally obtained as  




itloglogn

n
p̂               . . . .(5) 

Again, differentiating the equation partially (4) with respect to ‘ ‘ 

and equating it  to zero to obtain the m.l.e.  of   

0





 np)t(Llog
 

In the solution for MLE of   the traditional method is not 

applicable. The MLE is obtained through order statistic technique. Since 

the upper limit of the model is  ,  i t  is convincing to take t (n )  i .e.  maximum 

t i  as the m.l.e for the parameter   

i .e.    = t (n )  = max (t1 , t2 , . . . . . . . ,tn)            . . . .(6) 

ANALYSIS OF THE MODEL  

To analyze the model we will obtain probability generating function 

of Hn ,  the probability that there are n arrivals during the service time of a 

customer. 

 Let Hn  be the probability that there are n arrivals during the service 

time of a customer. Let  H(z) denotes the probability generating function 

(p.g.f.)  of Hn  given as  
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  H (z) = 1
1



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z;zH n

n
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 Following heuristic argument of Kendall (1953) and Gross and 

Hariss (1974), the probability H n  that there are n arrivals during the 

service time is given by 

 Hn = 
 
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Then the probability generating function of H n  is 
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The average number of arrivals during the service time is  

 H’(z) 


 ..
p

p
z

1
1              ….(9) 

Let we denote that   = 


.
p

p 1
 (the reciprocal of the mean) then  

 H’(z)



1z                     ….(10) 

Now, let Pn  be the probability that there are ‘n’ customers in the 

system at the steady state and P(z) be the probabil ity generating function 
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of Pn .  Then by expanding P(z) and collecting the coefficient of z
n
,  we get 

Pn .    

Furthermore, the analysis can be carried out in the same manner as 

in the Pathak (1995) for inversegaussian service time distribution system.  
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